Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface
نویسندگان
چکیده
This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs) on the surface of a copper foil supporting graphene oxide (GO) at annealing temperatures of 200-1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core-shell Cu-rGO or Cu2O-rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200-1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.
منابع مشابه
Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors
Reduced graphene oxide/cuprous oxide (RGO/Cu2O) composite films were directly synthesized on the surface of copper foil substrates through a straight redox reaction between GO and Cu foil via a hydrothermal approach. Characterization of the resultant composites with X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscope (FESEM) c...
متن کاملElectrosynthesized Reduced Graphene Oxide-Supported Platinum, Platinum-Copper and Platinum-Nickel Nanoparticles on Carbon-Ceramic Electrode for Electrocatalytic Oxidation of Ethanol in Acidic Media
In this work, the electrocatalytic oxidation of ethanol was studied in acidic media at the wholly electrosynthesized nanocomposites: platinum and its alloys (copper and nickel) anoparticles/reduced graphene oxide on the carbon-ceramic electrode (Pt/rGO/CCE, Pt-Cu/rGO/CCE, and Pt-Ni/rGO/CCE electrocatalysts). The electrosynthesized nanocomposites were characterized by scan...
متن کاملZiziphus mauritiana mediated synthesis of copper and nickel nanoparticles for comparative efficacy in biological water purification
The burden of life on the earth is the source of biological contamination in water. Nanotechnology has promising contributions in control of microbial contaminations and medicinal plants further increase these properties. Presently, copper acetate and nickel oxide nanoparticles were synthesized using 1mM solution of each with Ziziphus mauritiana leaves extract as reducing agent. Nanoparticles w...
متن کاملSynthesis and Characterization of Graphene Oxide Nano-Sheets for Effective Removal of Copper Phthalocyanine from Aqueous Media
Graphene Oxide (GO) nano sheets was synthesized from graphite by Hummers method. The nature and morphology of the GO were characterized using FT-IR, UV-Vis, SEM and XRD analysis. Batch sorption experiments were carried out to remove copper (ii) phthalocyanine-tetrasulfonic acid tetrasodium salt [Cu(tsPc)-4.4Na+] from its aqueous solutions using GO as an adsorbent. Experime...
متن کاملElectrocatalytic Determination of Glutathione Using Transition Metal Hexacyanoferrates (MHCFs) of Copper and Cobalt Electrode Posited on Graphene Oxide Nanosheets
A glassy carbon electrode was modified with graphene oxide nanosheets and a hybrid of copper-cobalt hexacyanoferrate. The nanocomposite was characterized by cyclic voltammetry, FT-IR and scanning electron microscopy. Cyclic voltammetry showed a stable and reversible redox pair with surface confined characteristics in phosphate buffer solution (0.1 M, pH 3). Hydrodynamic amperometry was used for...
متن کامل